

Recognizing the Importance of Lower Trapezius Strength and Function

Jason Shipley, PT, DPT, OCS Towson Sports Medicine May 6, 2016

Disclosures

 I have no actual or potential conflicts of interest to disclose with regard to the contents of this presentation

Goals

Brief anatomy review

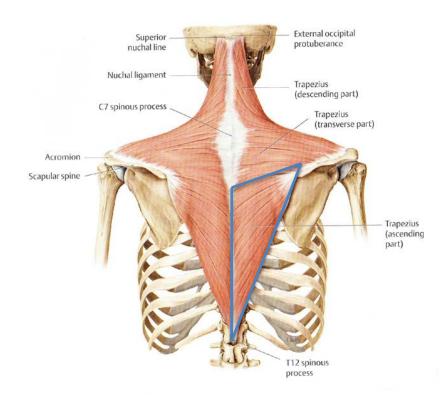
 Scapulothoracic function with focus on the role of the lower trapezius

Dysfunction of the lower trapezius

Treatment considerations

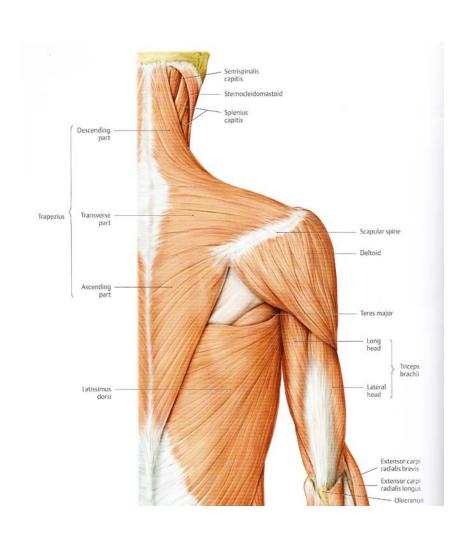
Anatomy - Trapezius

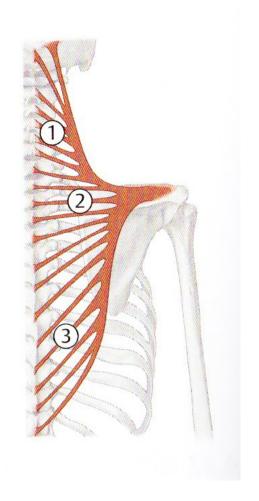
Origin


- Medial one third of nuchal line
- External occipital protuberance
- Ligamentum nuchae
- Spinous processes of C7-T12
- Supraspinous ligament

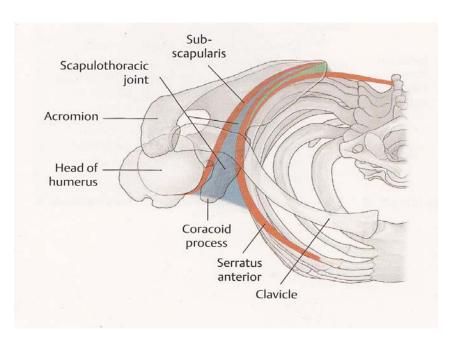
Insertion

- Lateral one third of the clavicle
- Medial aspect of the acromion
- Scapular spine
- Tubercle just lateral to medial border of scapular spine


Innervation

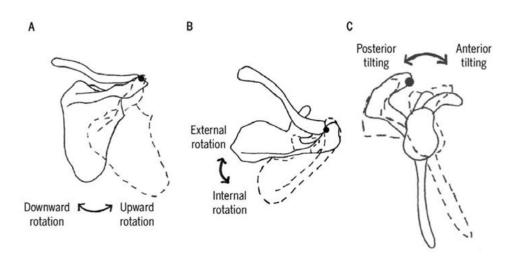

Spinal accessory nerve, C3, C4

Thieme Atlas of Anatomy

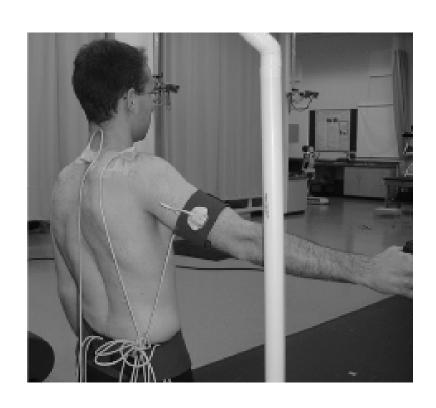

Anatomy

Thieme Atlas of Anatomy

Anatomy – Scapulothoracic "Joint"

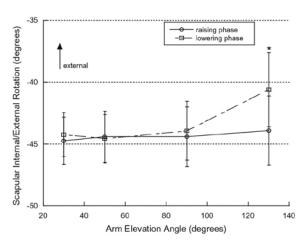


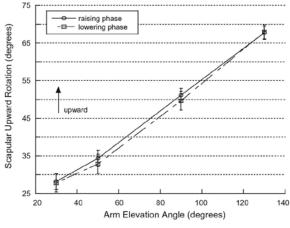
Thieme Atlas of Anatomy

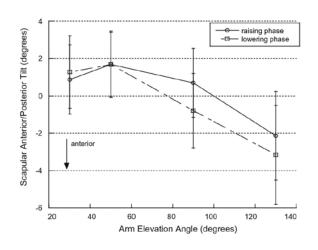

- Pseudoarticulation
- Indirect connection to axial skeleton via clavicular articulations
- Resting position with respect to thorax
 - Slight upward rotation
 - ~30-45 degrees internal rotation
 - ~5-20 degrees anterior tilting

Scapulothoracic Motion

- Scapulothoracic motion
 - Frontal plane
 - Upward and downward rotation (U/DROT)
 - Sagittal plane
 - Anterior and posterior tilting
 - Transverse plane
 - Internal and external rotation (I/EROT)
- All motions multiplanar given orientation of scapula on thorax
 - Protraction/Retraction




Scapulothoracic Motion



- Most consistent scapular kinematic findings with elevation
 - UROT throughout elevation
- Variability in the literature
 - Tilting
 - I/EROT
- Generally accepted
 - Posterior tilting
 - EROT

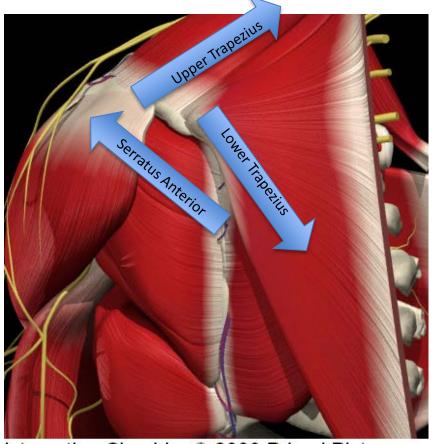
Scapulothoracic Motion

- Scaption from supported sitting
 - Raising and lowering
 - Kinematics and EMG

Scapula

- Functions of the scapula in the overhead athlete
 - Stable base for glenohumeral joint (GHJ)
 - Retract/Protract through the motion
 - Rotate the acromion to allow clearance
 - Base for muscle attachment
 - Transfer kinetic energy from the trunk to the upper extremity

- Most commonly discussed with regard to throwing
 - Reaching
 - Lifting
 - Weight-bearing
 - Swinging
- In summary provide dynamically stable platform for upper extremity function


Trapezius - Function

- Upper fibers (UT)
 - UROT
 - Elevation
- Middle fibers (MT)
 - Adduction (Retraction)
- Lower fibers (LT)
 - UROT
 - Depression

- Not so straightforward
 - Complex interaction between different fibers, other musculature
 - Different roles
 depending upon position
 - Mobility and stability function

Function – Force Couple for Upward Rotation

- Coordinated contraction
 - Synergistic UROT
 - Antagonistic elevation/depression
 - Results in dynamically fixed axis for UROT
- Do not forget
 - MT
 - Posterior rotator cuff
 - Pectoralis minor...

Interacti∨e Shoulder © 2000 Primal Pictures Ltd.

Function - Throwing

Table I. Shoulder activity by muscle and phase during baseball pitching^a (adapted from DiGiovine et al., [2] with permission)

Muscles	No. of subjects	Phase						
		wind-up ^b (% MVIC)	stride ^c (% MVIC)	arm cocking ^d (% MVIC)	arm acceleration ^e (% MVIC)	arm deceleration ^f (% MVIC)	follow-through ⁹ (% MVIC)	
Scapular								
Upper trapezius	11	18 ± 16	64 ± 53	37 ± 29	69±31	$53\!\pm\!22$	14 ± 12	
Middle trapezius	11	7±5	43±22	51 ± 24	71 ± 32	35 ± 17	15±14	
Lower trapezius	13	13±12	39±30	38±29	76±55	78±33	25±15	
Serratus anterior (6th rib)	11	14±13	44±35	69±32	60±53	51±30	32±18	
Serratus anterior (4th rib)	10	20 ± 20	40 ± 22	106±56	50±46	34±7	41 ± 24	
Rhomboids	11	7 ± 8	35 ± 24	41 ± 26	71 ± 35	45±28	14 ± 20	
Levator scapulae	11	6±5	35 ± 14	72 ± 54	76±28	33±16	14±13	
Glenohumeral								
Anterior deltoid	16	15±12	40 ± 20	28 ± 30	27±19	47±34	21 ± 16	
Middle deltoid	14	9 ± 8	44 ± 19	12 ± 17	36±22	59±19	16±13	
Posterior deltoid	18	6 ± 5	42 ± 26	28 ± 27	68 ± 66	$60\!\pm\!28$	13±11	
Supraspinatus	16	13±12	60 ± 31	49 ± 29	51 ± 46	39 ± 43	10±9	
Infraspinatus	16	11±9	30 ± 18	74 ± 34	31 ± 28	$37\!\pm\!20$	20 ± 16	
Teres minor	12	5 ± 6	23 ± 15	71 ± 42	54 ± 50	84±52	25±21	
Subscapularis (lower 3rd)	11	7±9	26±22	62±19	56±31	41±23	25±18	
Subscapularis (upper 3rd)	11	7±8	37 ± 26	99 ± 55	115±82	60±36	16±15	
Pectoralis major	14	6 ± 6	11±13	56 ± 27	54±24	29±18	31 ± 21	
Latissimus dorsi	13	12±10	33 ± 33	50 ± 37	88±53	59 ± 35	24 ± 18	
Triceps brachii	13	4 ± 6	17±17	37 ± 32	89±40	54 ± 23	22±18	
Biceps brachii	18	8±9	22±14	26±20	20±16	44±32	16±14	

a Data are given as means and standard deviations, and expressed for each muscle as a percentage of an MVIC.

MVIC = maximum voluntary isometric contraction.

b From initial movement to maximum knee lift of stride leg.

c From maximum knee lift of stride leg to when lead foot of stride leg initially contacts the ground.

d From when lead foot of stride leg initially contacts the ground to maximum shoulder external rotation.

e From maximum shoulder external rotation to ball release.

f From ball release to maximum shoulder internal rotation.

g From maximum shoulder internal rotation to maximum shoulder horizontal adduction.

Function - Throwing

- Stride phase
 - Scapular stabilization
 - Upward rotation for GHJ position for abduction
- Cocking phase
 - Scapular stabilization
 - Retraction for GHJ position for horizontal abduction and EROT
- Acceleration
 - Scapular stabilization
 - Base for rapidly rotating humeral head
- Deceleration
 - Eccentrically control scapular elevation, rotation, protraction

Function – Golf Swing

Table VIII. Scapular activity by muscle and phase during the golf swing^a (adapted from Kao et al., [45] with permission)

Muscles	No. of	Phase						
	subjects	take-away (% MVIC)	forward swing (% MVIC)	acceleration (% MVIC)	deceleration (% MVIC)	follow-through (% MVIC)		
Levator scapulae	15							
Trail arm		29±19	38 ± 39	34 ± 41	12±12	4 ± 4		
Lead arm		5 ± 3	42 ± 20	62 ± 46	39 ± 26	29 ± 24		
Rhomboids	15							
Trail arm		30 ± 18	46 ± 27	32 ± 24	21 ± 12	5±4		
Lead arm		7 ± 13	68 ± 27	57 ± 46	26 ± 26	30 ± 33		
Upper trapezius	15							
Trail arm		24 ± 14	4 ± 4	13 ± 20	23 ± 19	5±6		
Lead arm		5±4	29 ± 26	42 ± 50	34 ± 29	27 ± 18		
Middle trapezius	15							
Trail arm		37 ± 12	$18\!\pm\!24$	19 ± 26	26±21	12±15		
Lead arm		3 ± 3	51 ± 26	36 ± 21	21 ± 18	28 ± 20		
Lower trapezius	15							
Trail arm		52 ± 28	17 ± 12	16 ± 28	22 ± 22	10 ± 15		
Lead arm		7 ± 10	49 ± 27	37 ± 28	20 ± 16	35 ± 18		
Upper serratus anterior	15							
Trail arm		6 ± 4	58 ± 39	69 ± 29	52 ± 18	40 ± 14		
Lead arm		30 ± 15	20 ± 29	31 ± 31	31 ± 18	21 ± 13		
Lower serratus anterior	15							
Trail arm		9 ± 5	29 ± 17	51 ± 33	47 ± 25	40 ± 18		
Lead arm		27±11	20±21	21 ± 24	29±20	29±21		

a Data are given as means and standard deviations, and expressed for each muscle as a percentage of an MVIC.

MVIC = maximum voluntary isometric contraction.

Function – Golf Swing

- Take-Away
 - Trail arm upward rotation and elevation for GHJ positioning
- Forward Swing
 - Lead arm retraction and stabilization
- Acceleration, deceleration, follow-through
 - Lead arm stabilization (relatively low activity)

Dysfunction

- Can go wrong many ways
 - Weakness
 - Postural deviation
 - Pain inhibition
 - Muscular imbalance
 - Combination of any of the above

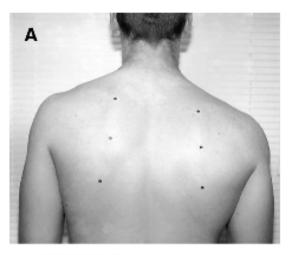
- Consequences
 - Force couple disruption
 - Altered length/tension relationships
 - Inability to fulfill scapular roles

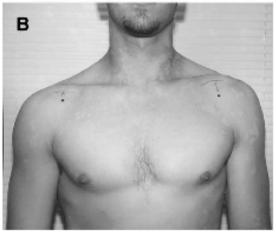
Dysfunctional Motion - Dyskinesis

- Impingement/Rotator Cuff Pathology
 - 9 studies evaluating UROT
 - 4 decreased
 - 1 increased
 - 4 no difference
 - 7 studies evaluating posterior tilting
 - 4 decreased
 - 2 increased
 - 1 no difference

- Multidirectional GHJ instability
 - 4 studies evaluating UROT
 - 4/4 decreased
- Shoulder stiffness (GHJ elevation)
 - 3 studies evaluating UROT
 - 3/3 increased

Dysfunctional Muscle Activity


- Cools et al 2004
 - 19 overhead athletes with impingement side:side comparison
 - Peak force and EMG activity during isokinetic protraction/retraction
- Significant findings
 - Lower peak protraction force at high velocity
 - Lower protraction/retraction force ratio at low velocity
 - Lower LT EMG activity during retraction at high velocity


Dysfunctional Muscle Activity

- Cools et al 2007
 - 39 overhead athletes with impingement and 30 healthy controls
 - EMG activity and intramuscular trapezius ratios during isokinetic abduction, isokinetic EROT
- Significant findings
 - Higher UT EMG activity both motions
 - Lower LT EMG activity abduction
 - Lower MT EMG activity EROT
 - Altered UT/MT, UT/LT ratios

Dysfunctional Muscle Activity

- Huang et al, 2015
 - 82 subjects with shoulder pain
 - Classified dyskinesis observationally into three categories
 - EMG activity and kinematics during scaption
- Significant results
 - Lower LT activity in those with inferior angle and medial border prominence during lowering
 - Higher UT activity in those with inferior angle and medial border prominence throughout

Dysfunction

- Good evidence for changes with pathology
 - Scapular dyskinesis
 - Altered muscular activity
 - Changes in overall activity
 - Changes in inter and intramuscular firing ratios
- Questions remain
 - Factors in etiology of pathology?
 - Compensatory mechanisms secondary to pathology?
 - Representative of pain inhibition?
 - What to do about it?

Treatment - Lower Trapezius

- Increasing % MVIC
 - Low row
 - Robbery
 - D1 flexion
 - Unilateral row
 - Scaption <80
 - Scaption > 120
 - Prone horizontal abduction with EROT (T)
 - Prone EROT at 90 abduction
 - Prone flexion at 135 abduction (Y)

Treatment – Lower Trapezius

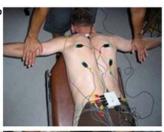

Figure 2. Low row exercise.

Figure 4. Robbery exercise.

Treatment – Lower Trapezius



- Arlotta et al, 2011
 - 18 healthy subjects
 - EMG during 5 isometric exercises
 - Assessed amplitude and intramuscular ratio
- Significant findings
 - Modified prone cobra and prone row most favorable when considering amplitude and isolation

Treatment – Scapular Muscle Balance

- Clinically often identify imbalance with UT activity greater than middle and lower fibers
- Cools et al, 2007
 - High ratio of LT and MT activity relative to UT
 - Prone extension
 - Sidelying elevation
 - Sidelying EROT
 - Prone horizontal abduction with EROT

Treatment – Progression

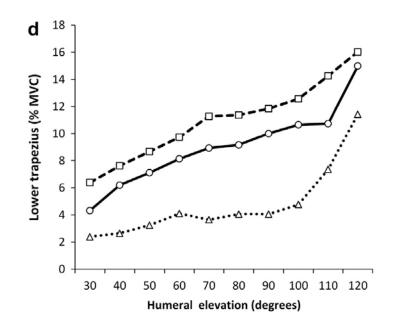


Figure 3. Lawnmower exercise, with weight.

- Transition to functional motions that are specific to the athletic activity
 - Incorporate "Kinetic Chain" components
 - Regional interdependence
 - Proximal influences
 - Scapular role in energy transfer
- LT is not just a stabilizer
 - Strength
 - Power

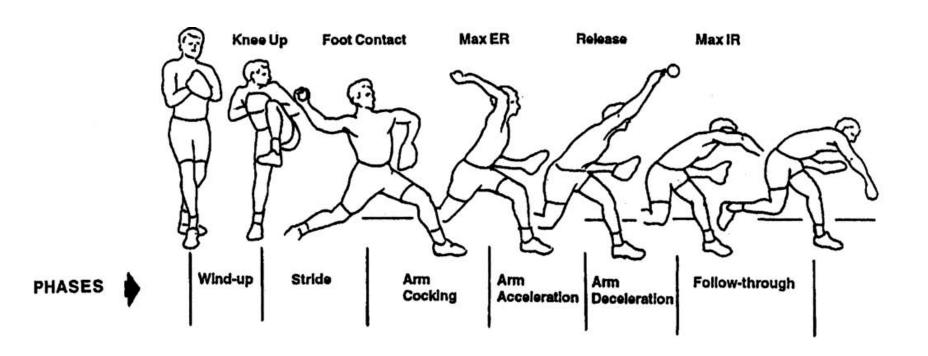
Treatment - Progression

- Functional motions
 - Diagonals
 - Rotation
 - Chop
 - Simulated throwing/serving
- Trunk rotation does impact firing patterns
 - Facilitation of muscle activity
 - Specificity of training

In Closing

- Lower trapezius function vital in supporting the role of the scapula
- Body of evidence demonstrating altered scapular kinematics and altered activity of the scapular musculature with pathology
- Wealth of research to assist in the selection of strengthening tasks to target scapular musculature

Thank You!


- Arlotta M, LoVasco G, McLean L. Selective recruitment of the lower fibers of the trapezius muscle. *J Electromyogr Kinesiol*. 2011;11:403-410.
- Borsa PA, Laudner KG, Sauers EL. Mobility and stability adaptations in the shoulder of the overhead athlete: A theoretical and evidence-based perspective. Sports Med. 2008;38:17-36.
- Cools AM, Declercq GA, Cambier DC, Mahieu NN, Witvrouw EE. Trapezius activity and intramuscular balance during isokinetic exercise in overhead athletes with impingement symptoms. *Scand J Med Sci Sports*. 2007;17:25-33.
- Cools AM, Witvrouw EE, Declercq GA, Vanderstraeten GG, Cambier DC. Evaluation of isokinetic force production and associated muscle activity in the scapular rotators during a protraction-retraction movement in overhead athletes with impingement symptoms. Br J Sports Med. 2004;38:64-68.
- De Mey K, Cagnie B, Van De Velde A, Danneels L, Cools AM. Trapezius muscle timing during selected shoulder rehabilitation exercises. J Orthop Sports Phys Ther. 2009;39(10)743-752.

- DiGiovine NM, Jobe FW, Pink M. EMG of upper extremity in pitching. *J Shoulder Elbow Surg*. 1992;1:15-25.
- Escamilla RF, Andrews JR. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. *Sports Med.* 2009;39(7):569-590.
- Gilroy AM, MacPherson BR, Ross LM. Thieme Atlas of Anatomy. New York, NY: Thieme Medical Publishers, 2008.
- Hobart DJ, Anderson DA, Conroy VM. A Dissector of Human Anatomy Emphasizing the Musculoskeletal System. University of Maryland School of Medicine Department of Physical Therapy and Rehabilitation Science, 2008.
- Huang TS, Ou HS, Huang CY, Lin JJ. Specific kinematics and associated muscle activation in individuals with scapular dyskinesis. *J Shoulder Elbow Surg*. 2015;24:1227-1234.

- Kao JT, Pink M, Jobe FW. Electromyographic analysis of the scapular muscles during a golf swing. Am J Sports Med. 1995;23(1):19-23.
- Kennedy DJ, Viso DJ, Press J. Current concepts for shoulder training in the overhead athlete. *Curr Sports Med Rep.* 2009;8(3):154-160.
- Kibler, WB. Current concepts the role of the scapula in athletic shoulder function. *Am J Sports Med.* 1998;26:325-337.
- Kibler WB, Kuhn JE, Wilk K, Sciascia A, Moore S, Laudner K, Ellenbecker T, Thigpen C, Uhl T. The disabled throwing shoulder: Spectrum of pathology – 10 year update. *Arthroscopy*. 2013;29:141-161.
- Lintner D, Noonan TJ, Kibler WB. Injury patterns and biomechanics of the athlete's shoulder. *Clin Sports Med.* 2008;27:527-551.

- Ludewig PM, Reynolds JF. The association of scapular kinematics and glenohumeral joint pathologies. *J Orthop Sports Phys Ther*. 2009;39(2):90-104.
- Nagai K, Tateuchi H, Takashima S, Miyasaka J, Hasegawa S, Agai R, Tsuboyama T, Ichihashi N. Effects of trunk rotation on scapular kinematics and muscle activity during humeral elevation. *J Electromyogr Kinesiol*. 2010;20:199-205.
- Uhl T. Scientific basis and implementation of exercises for scapular rehabilitation. Continuing education course – Baseball team medicine conference: Injury prevention and treatment techniques. 2009.

Phases of Pitching

Phases of the Golf Swing

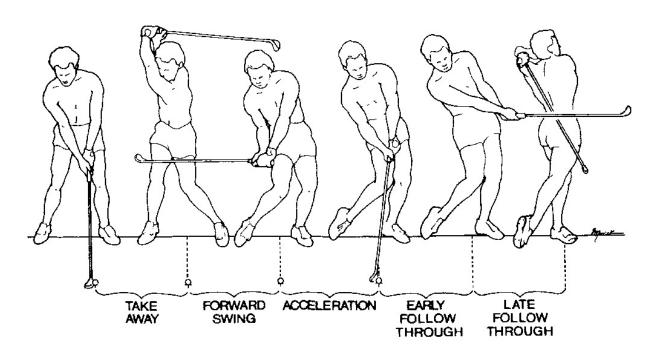


Figure 1. Phases of the golf swing. (Reprinted with permission.⁶)